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Abstract

An analytical method is proposed for solving the problem of coupled heat and moisture transfer in porous
materials. The coupled partial di�erential equations and boundary conditions are ®rst subjected to Laplace
transformation, the equations are reduced to ordinary di�erential equations, then the equations are converted into a

single fourth-order ordinary di�erential equation by introducing a transformation function. The solution of the
equation can be easily obtained, and thus, the temperature and moisture distributions in the transform domain can
be determined. Finally, the transformed values are analytically or numerically inverted to obtain the time domain

results. Therefore, the transient solution at any given time can be evaluated. The results are identical with published
analytical solutions for a special case using decoupling technique, and they agree with a published analytical
solution for wood slab. The method is compact enough to be generally applied to problems of heat and mass

transfer in porous media. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Simultaneous heat and moisture transfer ac-

companied by phase change and/or absorption heat in

some porous and composite materials is a process

which occurs frequently in various engineering appli-

cations. The moisture movement contributes to heat

transfer, while phase-change and/or heat of absorption

within the material act as heat sources or sinks.

The coupled system for temperature and moisture

potential can be handled through both analytical and

numerical approaches, depending on complexities of

the speci®c problem considered. For linear problems,

the analytical solutions, based on classical integral

transform approach, have been obtained by Mikhailov

et al. [1]. It was later discovered by the same group [2]

that the existence of complex eigenvalues, not

accounted for in the solutions previously reported,

could signi®cantly alter the temperature and moisture

distributions. Liu et al. [3] later recon®rmed such ®nd-

ings by discovering a pair of complex eigenvalue.

Recently, Mikhailov et al. [4] again found another

complex eigenvalue. In the cited papers, there exist nu-

merical di�culties in computing the complex conjugate

eigenvalues that lead to an incorrect solution contain-

ing high frequency oscillation of limited usefulness.

Chang et al. [5] applied a decoupling technique to

coupled governing equations, but failed to address the

case of simultaneous coupling of governing equations

and boundary conditions. Ribeiro et al. [6] treated the

coupled system by applying the generalized integral

transform technique with complicated procedures.

Recently, Cheroto et al. [7] presented a modi®ed

lumped system analysis method to yield approximate
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solutions, avoiding di�culties experienced by Mikhai-
lov et al., Liu et al., and Ribeiro et al., but sacri®cing
accuracy.

In this paper, a di�erent analytical approach is
developed. The coupled system is ®rst subjected to
Laplace transformation. The coupled partial di�eren-

tial equations thus are reduced to the coupled ordinary
di�erential equations. Then, the temperature and
moisture in the transformed domain are expressed in

terms of a transformation function. Consequently, the
system of ordinary di�erential equations can be
reduced to a single fourth-order ordinary di�erential
equation. The solution of the equation can be obtained

and the coe�cients are determined from the boundary
conditions. Finally, the transformed solution can be
analytically or numerically inverted to yield the time

domain results.

2. Problem formulation

A typical heat and mass transfer problem is gov-

erned by Luikov's equations [8], which relate to drying
a porous moist slab under constant pressure. The
phase-change occurring within the slab act as heat

source or sink resulting in the coupled relationship
between mass transfer and heat transfer. In a coupled
problem, the heat of absorption or desorption is gener-

ally one of the sources or sinks as well. This heat is
not negligible for some hygrothermal materials [9,10].
In the present study, one-dimensional governing

equations with coupled temperature and moisture for a
porous slab are considered, and the e�ect of the
absorption or desorption heat is added. Material prop-

erties and pressure are considered to be constant
throughout the material. A local thermodynamic equi-
librium between the ¯uid and the porous matrix is
assumed. Moreover, the coupled equations can be gen-

eralized to apply to cases of hollow cylindrical and
hollow spherical geometries. The equations are
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Nomenclature

cm moisture capacity (kg/kg 8M)
cp heat capacity (J/kg K)
C moisture content (kg/kg)

D equivalent di�usion coe�cient of moisture con-
tent (m2/s)

Dm conductivity coe�cient of moisture content

(kg/m s 8M)
hC convective heat transfer coe�cient (W/m2 K)
hm convective moisture transfer coe�cient (kg/m2

s 8M)
hLV heat of phase change (kJ/kg)
I0 modify Bessel function of the ®rst kind of

order zero

I1 modify Bessel function of the ®rst kind of
order ®rst

J0 Bessel function of the ®rst kind of order zero

J1 Bessel function of the ®rst kind of order ®rst
k thermal conductivity (W/m K)
K0 modify Bessel function of the second kind of

order zero
K1 modify Bessel function of the second kind of

order ®rst

` half thickness of specimen (m)
L equivalent di�usion coe�cient of temperature

(m2/s)
m moisture potential (8M)

m0 initial moisture potential (8M)

�m Laplace transformation of m
S Laplace transformation parameter
t time (s)

T temperature (K)
T0 initial temperature (K)
�T Laplace transformation of T

Y0 Bessel function of the second kind of order
zero

Y1 Bessel function of the second kind of order

®rst

Greek symbols
r material density (kg/m3)

n coupling coe�cient due to moisture migration
(K/8M)

l coupling coe�cient due to heat conduction

(8M/K)
f transformation function
g heat of absorption or desorption (kJ/kg)

e ratio of vapor di�usion coe�cient to coe�cient
of total moisture di�usion

Subscripts
0 initial condition
m moisture
1 ambient atmosphere
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where n � 1=2 for slab, n � 0 for hollow cylinder, and
n � ÿ1=2 for hollow sphere. T is the temperature, and

m is the moisture potential, k and Dm are the thermal
and moisture conductivity coe�cients, respectively, cp

and cm are the heat and moisture capacities of the

medium, respectively, r is the material density, hLV is
the heat of evaporative phase-change, g represents the
heat of absorption or desorption, d is the thermogradi-

ent coe�cient, and e is the ratio of the vapor di�usion
coe�cient to the coe�cient of total moisture di�usion.
All the material properties mentioned above are e�ec-

tive properties. The moisture potential m is related to
the moisture content C, and

C � cmm �2�

The coupling di�usion system represented by Eqs. (1a)

and (1b) contains not only general di�usion equations,
but also some source or sink terms. The governing
equation (1a) expresses the balance of thermal energy

within the body; the last term in this equation rep-
resent the heat sources or heat sinks due to liquid-to-
vapor phase-change and to the heat of absorption or

desorption. Similarly, Eq. (1b) expresses the balance of
moisture within the medium; the last term in this
equation represents the moisture source or moisture

sink with respect to the temperature gradient.
To simplify the notation, dividing Eq. (1a) by

rcpx
1ÿ2n and using the expression for

@=@x�x 1ÿ2n@T=@x� obtained from Eq. (1a) into Eq.

(1b), then rearranging the two new equations, yields
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where

L � k

rcp

�4a�

D � kDm
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In Eqs. (3a) and (3b), n and l are positive coupling
coe�cients due to moisture migration and heat con-

duction, respectively; L and D are also always positive
expressing the equivalent temperature di�usion coef-

®cient and the equivalent moisture di�usion coe�cient,
respectively. The moisture in Eq. (3a) will play the role
of a heat source for the temperature distribution, if the

moisture rate is positive (i.e. @m=@ t > 0), and act as a
heat sink if the moisture rate is negative (i.e.
@m=@ t < 0). Similarly, the temperature may play the

role of a moisture source or a moisture sink, depend-
ing on the temperature rate being positive or negative.
Therefore, the coupling di�usion system rewritten as

Eqs. (3a) and (3b) more compactly and clearly rep-
resents the same physical process modeled by Eqs. (1a)
and (1b).
At the boundaries of the domain, the latent heat of

vaporization becomes part of the energy balance, and
the mass di�usion caused by the temperature and
moisture gradients a�ects the mass balance. The as-

sociated hygrothermal boundary and initial conditions
are

k
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T�x, 0� � T0 �6a�

m�x, 0� � m0 �6b�

Eqs. (5a)±(5d) constitute the natural boundary con-

ditions for temperature and moisture, respectively.
Eqs. (5a) and (5b) represent the heat balance at x � x 1

and x � x 2: The two equations express the heat ¯ux in

terms of convection heat transfer and the phase-change
energy transfer. Eqs. (5c) and (5d) represent the moist-
ure balance at the two surfaces; the two terms on the

left-hand side of the equal sign describe the supply of
moisture ¯ux under the in¯uence of a temperature
gradient and a moisture gradient, respectively. The
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terms to the right side of the equal sign describes the
amount of moisture drawn o� from or into the sur-

faces. Eqs. (6a) and (6b) represent initial temperature
and moisture value within the domain, respectively.

3. Method of solution

Applying the Laplace transformation to Eqs. (3a),
(3b), (5a)±(5d) and (6a), (6b) with respect to t, they

become
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where �T�S � and �m�S � are the Laplace transformation
of T�t� and m�t�, respectively; and S is Laplace trans-

formation parameter.
Introducing a transformation function f�x, S � such

that
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we ®nd that Eq. (7a) is automatically satis®ed and Eq.

(7b) becomes
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Therefore, the system of coupled ODE equations (7a)
and (7b) is reduced to a single Eq. (11). Eq. (11) is a
fourth-order ODE.
Assume the solution of f�x, S � in the following

form

f �
X4
i�1

xi�S�ji�x, S� �12�

where ji represents di�erent functions, as shown in

Table 1, for slab, hollow cylindrical and hollow spheri-
cal geometries.
In Table 1, pi �

���
S
p

qi, in which qi is de®ned as
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2D
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and where

ai �
8<: 1 for i � 1, 2 if slab and hollow sphere

1 for i � 1, 2, 3, 4 if hollow cylinder

ÿ1 for i � 3, 4 if slab and hollow sphere

and

Table 1

The functions ji�x, S �, shown in Eq. (12), for slab, hollow

cylinder and hollow sphere

Geometry n ji

Slab 1/2 e pix

Hollow cylinder 0 I0�pix� for i � 1, 2

K0�pix� for i � 3, 4

Hollow sphere ÿ1/2 e pix=x
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bi �
�ÿ1 for i � 1, 3
1 for i � 2, 4

:

The coe�cients xi�S � �i � 1, 2, 3, 4� can be determined
by using Eqs. (8a)±(8d). The results are then written in

the matrix form

�K�
�
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where fx�S �gT and fQgT stand for the transpose of
fx�S �g and fQg, respectively, and where
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The solution of Eq. (14) can be determined by Cra-
mer's rule.

xi�S� �
jZij
jKj , i � 1, 2, 3, 4 �17�

where jZij is the determinant of the matrix resulting
from �K� in which the ith column is replaced by the

column vector fQg:
Substituting Eq. (17) into Eq. (12), Eqs. (10a) and

(10b) can be rewritten as
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As it is di�cult in general to ®nd the inverse Laplace

transformation of the functions �T�x, S � and �m�x, S �
analytically, a numerical inversion method [11] may be
used. This method has been proven to yield accurate

results in previous research [12]. However, for some
special cases, the functions at any given time can be
evaluated using the inversion theorem for the Laplace
transformation.

4. Analysis of a special case

As a special case of the foregoing analysis, we now

consider an in®nitely long hollow cylinder, having
inner and outer radii x 1 and x 2, respectively, subjected
to symmetrical hygrothermal loadings. The mathemat-

ical formulation is expressed as follows:
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T�x 1, t� � T1, T�x 2, t� � T1

m�x 1, t� � m0, m�x 2, t� � m0

T�x, 0� � T0, m�x, 0� � m0: �20�
In this problem, the moisture contains vapor phase

only, then the phase change within the cylinder is
excluded. A similar problem have been solved in pre-
vious research [5] by using decoupling techniques.

Comparing the present problem with the previous

general problem, we ®nd that

hC1 � hC2 � hC41, hm1 � hm2 � hm41, p1 � p3,

p2 � p4,

m11 � m12 � m1 � m0, q1 � q3, q2 � q4, hLV � 0,

L � k

rcp

, D � kDm

rcm�k�Dmdg� , n � cmg
cp

,

l � cpDmd
cm�k�Dmdg� :

�21�Fig. 1. Schematic representation of the wood slab.

Fig. 2. Temperature at the center and surface of wood specimen for case 1.
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This problem is a special case of the coupled system discussed previously. The corresponding coe�cients are now
reduced to
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The temperature and moisture distributions in the transformation domain, Eqs. (25a) and (25b) can be transformed
to time domain by the inversion theorem for the Laplace transformation [13]. From the theorem we then have
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Wk�x, t� � T1 ÿ T0
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where k � 1, 2; W1 and W2 represent T and m, respect-

ively; and

Uk �
��
K0

ÿ ���
z
p

qkx 2

�
ÿ K0

ÿ ���
z
p

qkx 1

��
I0
ÿ ���

z
p

qkx
�

�
�
I0
ÿ ���

z
p

qkx 1

�
ÿ I0

ÿ ���
z
p

qkx 2

��
K0

ÿ ���
z
p

qkx
�	

ezt,

k � 1, 2 �27a�
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�
,
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The singularities of the integrand are z � 0,���
z
p

q1 � ian, and
���
z
p

q2 � ian, which correspond to the
simple poles z � 0, z � ÿa2n=q21, z � ÿa2n=q22, respect-

ively, where an satis®es

J0�anx 1 �Y0�anx 2 � ÿ J0�anx 2 �Y0�anx 1 � � 0 �28�

Note that the relationships I0�ianx� � J0�anx� and
K0�ianx� � ÿpi2 �J0�anx� ÿ iY0�anx�� are used to obtain

the above equation.
Using the residue theorem to evaluate Eq. (26),

yields
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k � 1, 2: �29�

Fig. 3. Moisture content at the center and surface of wood specimen for case 1.
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The residue at z � 0 can be evaluated for small argu-
ments I0�z�11, I1�z�1z=2, K0�z�1ÿ ln z, and

K1�z�11=z; then the limit can be taken by letting
z40, that is

Res�0� � 1: �30�
The residue at z � ÿa2n=q21, and z � ÿa2n=q22 may be

obtained from
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!
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2
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�
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,

k � 1, 2:
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Di�erentiating Eq. (27b), we have
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In Eq. (32), inserting ian in place of
���
z
p

qk, and using
the relationships I0�z�K1�z� � I1�z�K0�z� � 1=z,
I0�ianx� � J0�anx�, and Vk � 0 in Eq. (27b), the follow-
ing form is obtained

ÿa
2
n

q2k

dVk

dz

����
z�ÿa2n=q2k

� J 2
0�anx 2 � ÿ J 2

0�anx 1 �
2J0�anx 1 �J0�anx 2 � ,

k � 1, 2:

�33�

Similarly,

Uk

 
ÿ a2n
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!
� ÿ p

2

��
Y0�anx 2 � ÿ Y0�anx 1 �

�
J0�anx�
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�
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� eÿ�a2n=q2k �t, k � 1, 2 �34�

Finally, substituting Eqs. (33) and (34) into Eq. (31),

and then substituting Eqs. (31) and (30) into Eq. (29),
the following results are obtained:

Fig. 4. Temperature at the center and surface of wood specimen for case 2.
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Fig. 5. Moisture content at the center and surface of wood specimen for case 2.
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In order to compare the results written in Eq. (35)
with the results of [5], Eq. (35) can be rewritten as fol-

lows:

T�x, t� ÿ T0

T1 ÿ T0
� 1ÿ p

B1 � B2X1
n�1

�
J0�anx 1 � ÿ J0�anx 2 �

�
J0�anx 1 �U0�anx�

J 2
0�anx 1 � ÿ J 2

0�anx 2 �
�
ÿ
B1 eÿa

2
nt=q

2
1 � B2 eÿa

2
nt=q

2
2

�
�36a�

m�x, t� ÿm0
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pLB1B2
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where

U0�anx� � J0�anx�Y0�anx 2 � ÿ J0�anx 2 �Y0�anx� �37a�
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B1 � 1ÿDq21
nl

�37b�

B2 � Dq22 ÿ 1

nl
�37c�

and where �Tÿ T0�=�T1 ÿ T0� and �mÿm0�=l�T1 ÿ
T0� are dimensionless forms of T and m, respectively.

The temperature and moisture distributions, as writ-
ten in Eqs. (36a) and (36b), are identical to those
obtained by previous research [5].

5. Numerical results and discussions

Now we consider a wood slab, subjected to sym-
metrical hygrothermal loadings; the heat and moisture
transfer are coupled within the slab and its boundaries.

Two cases are discussed here. For case 1, the coupled
system is modeled by Eqs. (3a), (3b) to (6a), (6b). The
geometry and the material properties of the wood slab

shown in Fig. 1, which were used by Liu et al. [3], are
used in the numerical calculations for comparison.
Therefore, absorption heat in Eqs. (3a) and (3b) is
assumed to be negligible and the geometry and bound-

ary conditions in Eqs. (5a)±(5d) are assumed to be
symmetric. The results can be obtained from Eqs.
(18a) and (18b), and the data are as follows:

n � 1=2, T0 � 108C, T1 � 1108C, m0 � 868M,

m1 � 48M, r � 370 kg=m3, k � 0:65 W=�m K�,

Dm � 2:2� 10ÿ8 kg=�m s 8M�,

hLV � 2500 kJ=kg, hC1 � hC2 � hC � 2:25 W=�m2 K�,

e � 0:3, cp � 2500 J=�kg K�, cm � 0:01 kg=�kg 8M�,

d � 2:08M=K, hm1 � hm2 � hm � 2:5� 10ÿ6 kg=�m2

s 8M�, ` � 0:012 m, g � 0:

For case 1, the temperature and moisture evolution at
the surface and at the middle of the slab are shown in
Figs. 2 and 3. It can be seen that the results from the
two di�erent methods agree well, even though the in-

itial moisture content deviates a little, as shown in Fig.
3. The discrepancies might be caused by not including
enough complex eigenvalues when using the eigenvalue

method [3,4].
For case 2, to evaluate the ambient temperature

e�ects on the moisture of the medium during drying,

we make T0 � T1 � 258C, and the other data are kept
the same as for case 1. Fig. 4 shows the temperature
evolution at the surface and at the center of the slab.

The temperature of the slab at initial time is equal to
that of the atmosphere, while the moisture of the slab

is higher than that of the atmosphere, so that moisture
is transferred from the surface of the slab as vapor to
the atmosphere. Initially, this evaporation causes cool-

ing of the slab at the surface. Subsequently, the tem-
perature within the slab also decreases due to heat
conduction. After the temperature decreases to a value

of about 98C, it begins to increase due to heat convec-
tion from the surfaces. Simultaneously, the slab gains
heat from the ambient atmosphere and loses heat

through latent heat of evaporation. According to our
mathematical analysis, the slab should reach an equi-
librium temperature at T � 258C after 30 h.
The moisture content evolution is shown in Fig. 5.

As expected, the moisture content of the slab decreases
with increases in time, until it reaches an equilibrium
value of 0.04 kg/kg after 30 h. The moisture content at

the surfaces is lower than in the interior.
Comparison of Figs. 3 and 5 indicates that the tem-

perature has some e�ects on moisture migration during

drying. Generally, the coupling e�ect between the tem-
perature and moisture content becomes signi®cant as
the value D=L approaches unity, while it will diminish

as n � l approaches zero. In this study, according to the
data given by Liu et al., they are D=L11=12 and n �
l11=20:

6. Conclusion

This study proposes a new analytical approach that
consists of applying the Laplace transform technique
and a transformation function to solve the problem of

coupled temperature and moisture transport. The
results, shown to be the same as published analytical
solutions obtained using a decoupled technique, com-

pare very well against published analytical solution for
a wood slab con®guration, and can serve to evaluate
the accuracy of approximate or numerical solutions.

Therefore, the method is recommended for analytically
solving problems involving coupled temperature and
moisture transport in porous materials.
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